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We consider the propagation of magnetoacoustic waves in an ideally conductive laminar- 
heterogeneous medium in the presence of a constant external magnetic field. The equa- 

tion for determination of the reflection factor of a fast magnetoacoustic wave from an 
heterogeneous layer is obtained. 

1. Let the properties of the medium continuously change in the direction of z-axis 
while the external magnetic field H is perpendicular to this axis. Let us direct the z - 
axis along the vector H. The linearized equations of the magnetohydrodynamics for the 

waves, polarized in the plane XZ, take the form n] 

a% 1 ap ah, au, ah, -_ 
at --pi* at=-Hx, at 

au, -CH- a2 

Here u is the velocity of the medium, p and h are, respectively, small changes in 
pressure and in the magnetic field in the wave. The density p and the normal velocity 
of sound a, defining properties of the medium, are functions of the coordinate z. By 
virtue of adiabatic nature of the motion, changes in pressure and in density are COMeCted 

by the relation 8P a? -= al - 
at at 

We shall assume that the unperturbed parameters of the medium vary in space suffi- 
ciently slowly. Therefore, the last term of the fifth equation in (1.1) being a small value 

of second order can be neglected. 
In the case of monochromatic waves of frequency w , eliminating v,, h, and hz from 

Assuming 
p = p cz) ,+ W-4, uz = v(z) ,$ (bx-w’), b = const 

system (1.2) is reduced to 

-& (UP) = iwv,, J$=~(1 -xx)p (1.4) 

Here the following notation is introduced 

x = (a&)“, g = P (1 - $x)9 u=lt-$-_sx (1.5) 

From (1.4) taking into account (1.3) we obtain the following equation for pressure: 

Here derivatives with respect to z are denoted by primes, A is the Laplace operator, 
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(1.7) 

At a very slow change of unperturbed parameters of the medium in space, when terms 

with the derivatives of these parameters may be disregarded, Eq. (1.6) takes the form of 
a wave equation with the variable wave number k 

Ap + kap = 0 (1.6) 

Quantity u plays part of a square of dimensionless velocity of the magnetoacoustic 

wave in a heterogeneous medium. According to (1.5) and (1.7) we have 

ua - (f + Ip) ZJ + 9 (b/k)2 = 0 (1.9) 

Let us assume that when I + - 00, parameters of the medium tend to constant values 

PO and a,. Dispersion equation of plane magnetoacoustic waves in a homogeneous medi- 

urn has the form fl] 
uoa-((1+~0)U0+~0sins80=0 

(II0 
no=-* Ijo=X 

4npoa$ 

where O. is the angle between the normal to the wave front and the oz-axis. (1.10) 

Since for z -, - 00 the quantity u must tend to ~0, from (1.9) and (1.10) follows 

According to the Snell law 
b = k, sin 8, (1.11) 

k, sin I30 = k sin 8 (1.12) 

and Eq. (1.9) takes the form 

u2 - (1 + 9) u + 9 sin” 8 = 0 (1.13) 

The roots of this equation determine velocities of fast and slow magnetoacoustic 
waves in a heterogeneous medium. 

Since discarding of small terms in a differential equation can, in some cases, lead to 
erroneous results, the case presents an interest to reduce the exact equation (1.6) to a 
wave equation. 

This is possible if in place of pressure, a new function is introduced 

T+ (1.14) 

For this function, in accordance with (1.6). the following 
“effective” square of the wave number is obtained : 

AT+k&,T=O 

wave equation with a certain 

(1.15) 

(i.16) 

which coincides with the known result for acoustic waves in heterogeneous media in the 

absence of magnetic field p, 31. 

2. Now let parameters of the medium also tend to constant values pl, al for z -* i- 
+ CO , i.e. we have a heterogeneous layer. Let us assume that from a homogeneous 
medium with z = - QJ a plane fast magnetoacoustic wave is propagating in the direc- 

tion of positive 2. 
Equations (1.4) can be satisfied if we suppose thay for z = - 00 , besides an incident 
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wave there exists a reflected wave as well. 

Our problem consists in determining the relation of ampNudes of reflected and inci- 
dent waves, i, e, to find the amplitude reflection factor. In the case under consideration 

of a magnetic field perpendicular to the z -axis, it is possible to obtain a special equa- 
tion for this factor (similar to the case of acoustic waves in the absence of a magnetic 
field and the case of electromagnetic waves [3]). 

Setting in (1.4) 
p = 23 (4% f2.V 

and eliminating the derivative p’, we obtain the Rikkati equation for determination of 
function 2 f.2) 

2’ -#- (2.2) 

If the medium properties vary slightly on the extent of the wave length, the first 
two terms in the left side of (2.2) can be neglected, and we then find 

The “plus” sign corresponds to an incident wave and the “minus” sign to a reflected 
wave. 

The more accurate value of the function 2 (a) differs from (z&3) by small terms of 
the order of derivatives of unperturbed parameters of the medium. These additional 

terms must be discarded as with substitution of 2 (z) in (2. I) they will give quantities 
of the second order of smallness. 

Let us now define incident and reflected waves in the foIlowing manner: 
incident wave 

p = P (2) 3 @+, 8% - - pp(q ,i@=+4 

reflected wave 
p = R (2) ei f-Q L ?x = _ Z-IR (.q @i @+w 

Here, by 2 we understand its value with the “plus” sign. 
According to (1.4) with (2.3) taken into account, we have far functions P and R the 

following equations : 
P’- 

[. 
$++(+g.)]p++ Le.&$=* 

~~~~~~~[~_~(~-~)I~=~ 

Multiplying the first of the above equations by R, and. the second by P, subtrac~~g 
one from the other and dividing the result by P, we obtain the Rikkati equation for the 

reflection factor W 0) = B/P w’ = 
-2@w+r(1- W) (3.41 

pz-$$:-ka Jfn~--asin~ea, 
1 (Zu) P ‘ 

7==--~~=-$-$- .g 
( ) 

(2.5) 

k aI IG n=- 
ko 

z.sI 
a Vu 

As the boundary condition we have 

W-+0 for z--, co (2.6) 

since for a t 00 (behind the layer) the refIected wave is absent. 
Equation (2.4) differs from the equation for the reflection factor of the acoustic wave 

in the absence of magnetic field only by the fact that in place of density p the quantity 
g appears, and the velocity of the magnetoacoustic wave replaces the normal velocity 
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of sound. 

In a weak magnetic field (& < 1) according to (1.5). (1.10). (1.13) and (2.5) we 
have ug = 1 + $, co@ 00, u = i + $, (pdp) (na - sin a O,) 

P = PC,) (I+ %pd). +r = rto) + % $0 t6 + Wp) sin2 001 (2.7) 

ho) - a0 --% v/n% - si& &J, 
1 P P(O) ’ 

50)=-z-~) p ( > 

6 ; ( 
sin” OO CO9 00 

=- n’ - sinz 80 - n2 T), 
a0 n=- 
a 

Setting in (2.4) 
w= WCo, + q. a (z) (2.3) 

where WCol is the reflection factor in the absence of the magnetic field, and discarding 

ferms of the order of $2, we obtain the following linear equation for the function e (z) : 

8’ f Ne = Q, N= 2 (i&O) + Y(0) W(0)) 
Q= - 24$4Wco) + Ye IS + (pa/p) sin2 e,l’ (1 - Wco$) 

Hence with (2.6) taken into account, we have 
2 

e (2) = ew8 
s 

Qe%lz, z=\ Ndz (2.9) 
co 20 

Here a, is an arbitrary fixed value of the coordinate z. 
In a strong magnetic field ($0 9 1) 

uo = 4% 
p0ao”’ 

u=l)=qJo- pa’ 
(2.10) 

nn’ 
~=--$-=--_(n.__in~Bo~, n2=+ 

If qpo is so great that in (2.4) the term with the factor b,can be neglected, we obtain 
an equation with separable variables. By integrating this equation under condition (2.6) 
we find wr=w _ ~~cos~~- ficose - oo- r/p1 cos e1 + l/p ~09 e (2.11) 

Expression (X.11) represents the reflection factor from the interface of two media [4], 

i.e. corresponds to the case of transitional layer of thickness considerably less than the 
length of a fast magnetoacoustic wave. Setting now in (2.4) 

w=w,+ & 1(z) (2.12) 

and discarding terms of the order of qo-l we have 

?j’ + 27 Wm q = - 2i (o/120) Wp, ‘)/nZ - sin2 O. 

Hence L z 

q=---2i-$ em8 
s 

W8 I/n- - sin2 O~esdz, s =:2 yW,dz c (2.13) 
c 

co 20 
In the case being considered of the incidence of a fast magnetoacoustic wave on an 

heterogeneous layer in a magnetic field, parallel to the layer, slow magnetoacoustic 
waves do not appear. In accordance with [4, 51, in such a magnetic field slow waves 
do not appear even in the presence of boundaries on which the medium properties change 
with a jump. 

The author is grateful to K. P. Staniukovich for his discussion on the results obtained. 
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ON EQUATIONS OF THREE-DIMENSIONAL LAMINAR BOUNDARY 

LAYER OF BODIES OF REVOLUTION 
PMM Vol. 34, Ml, 1970, pp. 145-149 

B. M. BLJLAKH and M. S. SIMKIN 

(Recei%%a~a~ , 4 1969) 

The uniformly accurate equations of a plane uniform laminar boundary layer for a body 
whose profile is sharply curved, are derived in p]. In the present paper the results of p] 
are generalized for the case of a body of revolution in a supersonic gas flow at incidence. 
The most important result lies in the fact that parameters of the gas flow in the boundary 
layer in the domain of sharp curvature of the generatirix of the body of revolution can 

be defined independently in every meridional plane passing through the axis of symmetry 
of the body if the curvature radius of the generatrix of the body becomes a quantity of 

the order of boundary-layer thickness. 

1. We consider a certain body of 
revolution whose curvature x of the 

Fig. 1 

generatrix AOB (Fig. 1) is a continuous function of the coordinate s, measured along 
the generatrix from the point 0,where x attains its greatest value x,,,, and the radius 
of curvature, correspondingly, its minimum value S = (~,~a~)-~. We take the distance 


